机器学习:实用案例解析
机器学习是计算机科学和人工智能中非常重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。
全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。本书讨论的案例从分类讲到回归,然后讨论了聚类、降维、最优化问题等。这些案例包括分类:垃圾邮件识别,排序:智能收件箱,回归模型:预测网页访问量,正则化:文本回归,最优化:密码破解,无监督学习:构建股票市场指数,空间相似度:用投票记录对美国参议员聚类,推荐系统:给用户推荐R语言包,社交网络分析:在Twitter上感兴趣的人,模型比较:给你的问题找到最佳算法。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有启发性,易于理解。在探索这些案例的过程中用到的基本工具就是R统计编程语言。R语言非常适合用于机器学习的案例研究,因为它是一种用于数据分析的高水平、功能性脚本语言。
部分知识点列表编辑
开发一个朴素贝叶斯分类器,仅仅根据邮件的文本信息来判断这封邮件是否是垃圾邮件;
使用线性回归来预测互联网排名前1000网站的PV;
利用文本回归理解图书中词与词之间的关系;
通过尝试破译一个简单的密码来学习优化技术;
利用无监督学习构建股票市场指数,用于衡量整体市场行情的好坏;
根据美国参议院的投票情况,从统计学的角度对美国参议员聚类;
通过K近邻算法构建向用户推荐R语言包;
利用Twitter数据来构建一个“你可能感兴趣的人”的推荐系统;
模型比较:给你的问题找到最佳算法。
资源链接
标签
发布日期
2019-02-23
擦亮日期
2019-02-23